Prediction of arterial failure based on a microstructural bi-layer fiber-matrix model with softening.
نویسنده
چکیده
Two approaches to predict failure of soft tissue are available. The first is based on a pointwise criticality condition, e.g. von Mises maximum stress, which is restrictive because only local state of deformation is considered to be critical and the failure criterion is separated from stress analysis. The second is based on damage mechanics where internal (unobservable) variables are introduced which make the experimental calibration of the theory complex. As an alternative to the local failure criteria and damage mechanics we present a softening hyperelasticity approach, where the constitutive description of soft tissue is enhanced with strain softening, which is controlled by material constants. This approach is attractive because the new material constants can be readily calibrated in experiments on the one hand and the failure criteria are global on the other hand. We illustrate the efficiency of the softening hyperelasticity approach on the problem of prediction of arterial failure. For this purpose, we enhance a bi-layer fiber-matrix microstructural arterial model with softening and analyze the arterial failure under internal pressure. We show that the overall arterial strength is (a) dominated by the media layer, (b) controlled by microfibers and (c) increased by residual stresses.
منابع مشابه
PREDICTION OF STATIC SOFTENING OF MICROALLOYED STEEL BY THE INTEGRATION OF FINITE ELEMENT MODEL WITH PHYSICALLY BASED STATE VARIABLE MODEL
Abstract Recovery and recrystallization phenomena and effects of microalloying elements on these phenomena are of great importance in designing thermomechanical processes of microalloyed steels. Thus, understanding and modeling of microstructure evolution during hot deformation leads to optimize the processing conditions and to improve the product properties. In this study, finite element...
متن کاملPrediction of ultimate strength of shale using artificial neural network
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...
متن کاملINTRAPLY HYBRID COMPOSITES BASED ON BASALT AND NYLON WOVEN FABRICS: TENSILE AND COMPRESSIVE PROPERTIES
In this study, the tensile and compressive behaviors of pure and hybrid composite laminates reinforced by basalt–nylon bi-woven intra-ply fabrics were experimentally investigated. Epoxy resin was used as the matrix material. The purpose of using this hybrid composite is to obtain superior characteristics by using the good strength property of basalt fiber with the excellent toughness of ny...
متن کاملA Novel Two-Scale Progressive Failure Analysis Method for Laminated Fiber-Reinforced Composites
A novel, two-scale computational model has been developed to predict the progressive damage and failure responses of fiber-reinforced composite laminates using the material properties at the constituent (fiber and matrix) level. These properties were measured from coupon level tests on a unidirectional lamina of the same material system. In the proposed computational scheme, the macroscale fini...
متن کاملFEM Implementation of the Coupled Elastoplastic/Damage Model: Failure Prediction of Fiber Reinforced Polymers (FRPs) Composites
The coupled damage/plasticity model for meso-level which is ply-level in case of Uni-Directional (UD) Fiber Reinforced Polymers (FRPs) is implemented. The mathematical formulations, particularly the plasticity part, are discussed in a comprehensive manner. The plastic potential is defined in effective stress space and the damage evolution is based on the theory of irreversible thermodynamics. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 41 2 شماره
صفحات -
تاریخ انتشار 2008